

La Valutazione Integrata dell'Impatto dell'Inquinamento atmosferico sull'Ambiente e sulla Salute in Italia

Studi precedenti e approccio VIIAS Roma, 4 giugno 2015

La valutazione di impatto (Health impact Assessment, HIA) assume per valida una stima del rischio relativo (FCR, Funzione Concentrazione-rRsposta) derivante da altri e precedenti studi e la applica al profilo di esposizione della popolazione in studio ricavando il numero di soggetti deceduti o malati causati dall'esposizione in studio

Questo tipo di valutazioni sono utili per quantificare la proporzione (quota) di malattia attribuibile all'esposizione :

Stima del carico di malattia

che la popolazione non sperimenterebbe

(non dovrebbe sperimentare)

se non fosse esposta oltre un livello predefinito (o livello Controfattuale)

 porre le basi conoscitive per lo sviluppo di procedure concordate e conformi

•per orientare le scelte di priorità di intervento sulla base di quantificazioni scientifiche oggettive che derivano dallo stato delle conoscenze disponibili sull'argomento

Valutazione d'impatto

Calcolo del numero di casi attribuibili a un determinato inquinante

E, ovvero il numero dei casi attribuibili a una concentrazione di inquinanti atmosferici oltre un determinato livello di riferimento, è dato dalla seguente equazione:

$$E = A * B_0 * C/10 * P$$

Dove:

A è la proporzione dell'effetto sanitario attribuibile all'inquinamento dell'aria, che può essere calcolata come segue:

$$A = \frac{(RR-1)}{RR}$$

B₀ è il tasso di mortalità (morbosità) che si osserverebbe al livello di concentrazione di riferimento dell'inquinante e può essere calcolato nel modo seguente:

$$B_0 = \frac{B}{[1 + (RR-1)^* (C/10)]}$$

dove B è il tasso di mortalità (morbosità) osservato, alla concentrazione osservata dell'inquinante, ottenuto dalle statistiche sanitarie disponibili;

C è la variazione di concentrazione (cioè la differenza tra la concentrazione osservata e quella di riferimento), ottenuta dalle reti di monitoraggio di ogni città; P è la popolazione esposta, ottenuta dai dati di censimento.

<u>L'appropriatezza</u> di ogni valutazione di impatto dipende in sintesi da:

estrapolabilità della relazione dose-risposta dalla/e popolazione/i in cui è stata studiata in origine a quella oggetto della valutazione;

validità dei dati sulla distribuzione dei livelli di esposizione;

Assumono inoltre importanza:

- · scenari alternativi
- soglie controfattuali diverse
- confronto tra risultati ottenuti con modelli diversi

I valori controfatttuali possibili

25 µg/m³: Commissione Europea

20 μg/m³ : Parlamento Europeo

15 μg/m³ : US EPA

10 μg/m³: OMS AQG

www.apheis.net

www.euro.who.int/Document/E90038.pdf

Valori proposti come limite

per il PM 2.5

Ballester F, Medina S, Boldo E, et al. Reducing ambient levels of fine particulate could substantially improve health: a mortality impact assessment for 26 European cities. J Epidemiol Community Health 2008:62:98-105

L'evidenza empirica indica che, per i livelli di particolato analizzati negli studi più robusti, la relazione concentrazione-risposta può essere modellata ragionevolmente come una funzione di tipo lineare.

Valutazione di impatto: studi precedenti ed approccio VIIAS

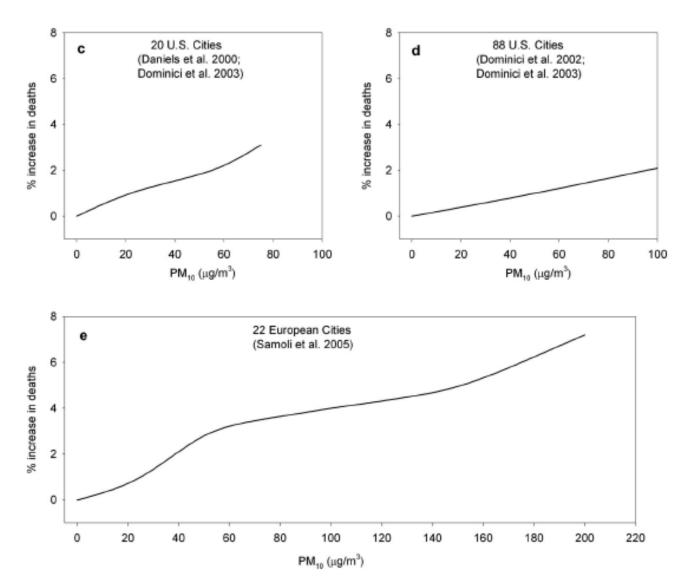
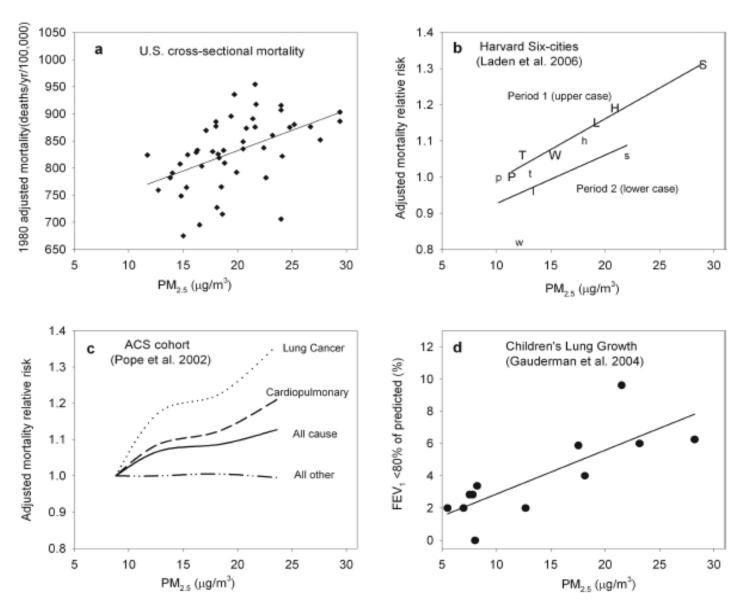


Figure 1. Selected concentration-response relationships estimated from various multicity daily time series mortality studies (approximate adaptations from original publications rescaled for comparison purposes).


Centro Nazionale per la Prevenzione

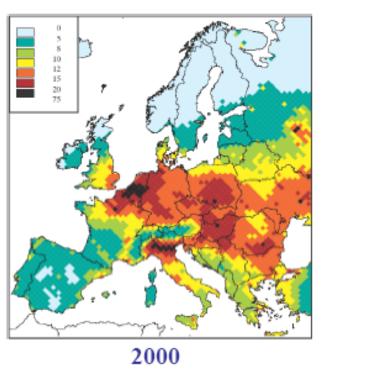
Valutazione di impatto: studi precedenti ed approccio VIIAS

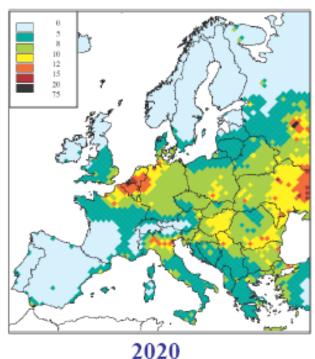
rorn

Prime stime di impatto in Europa

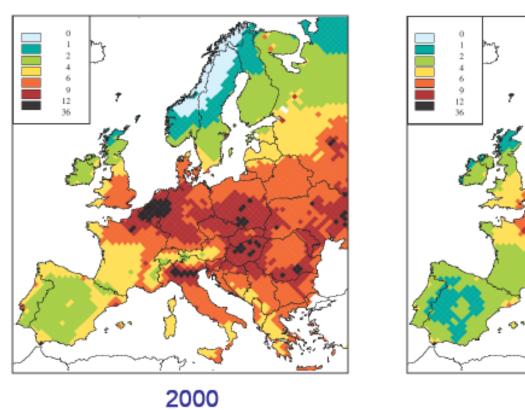
- Results presented at the third Conference of Ministries of Health and Environment, London 1999 (Kunzli et al, Lancet 2000).
- Attributable deaths among the adult population, 1996:
 - 31.700 in France
 - 5.600 in Austria
 - 3.300 in Svitzerland
- 1 years of life expectancy is the result of a reduction of $10 \,\mu\text{g/m}^3$ di PM_{10} for a long term exposure (Brunekreef, Occup Environ Med 1997).

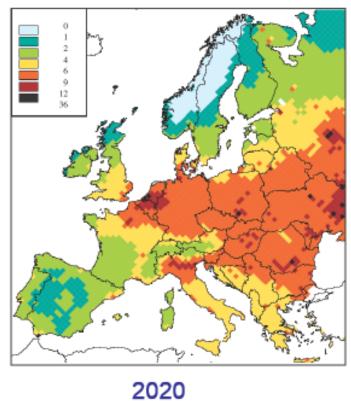
Lo studio CAFE (Clean Air for Europe) - 2005





Studio CAFE e mesi di vita persi in Europa (2005) Concentrazioni PM 2.5




Grid-average concentrations, annual mean [μg/m³] from known anthropogenic sources excluding sec. org. aerosols Average of calculations for 1997, 1999, 2000 & 2003 meteorologies

Months of years of life lost due to current PM2.5 levels (Bertollini, WHO, 2005 – studio CAFE)

Loss of life expectancy in months

The Europen limits for PM10 (20 μ g/m3) can reduce significantly the impact on health (Bertollini, WHO, 2005)

Estimates for 25 EU countries

Impact estimate for 2000	Expected reduction of the impact in 2020 – current legislation			
3 million life years lost	1 million			
280 thousand premature deaths / year	80 thousand			
80 thousand hospital admissions / year	30 thousand			

Economic valuation of health impact

ed il Controllo delle Malattie

243 – 669 billion € / year	89 - 193 billion € / year

1 Billion = 1,000 million

La valutazione APHEIS (2008)

Potenziali benefici (riduzione di morti premature, popolazione 30 anni e più) per concentrazioni medie annue di PM 2.5 pari a diversi scenari, Apheis 2008

```
25 μg/m³: riduzione media pari a 0.4 % (0.1 – 0.8 IC 95%)
```

20 μg/m³ : riduzione media pari a 0.8 % (0.2 – 1.6 IC 95%)

15 μg/m³ : riduzione media pari a 1.6 % (0.4 – 3.1 IC 95%)

10 μg/m³ : riduzione media pari a 3 % (0.8 – 5.8 IC 95%) (tranne Londra e Dublino)

Nel 2006 l'OMS stima l'impatto sanitario del PM10 in 13 grandi città italiane sulla base dei livelli 2002-2004

La versione inglese è tradotta in italiano a cura dell'APAT (oggi ISPRA).

L'impatto sanitario è notevole: 9% della mortalità naturale oltre i 30 anni oltre un controfattuale di 20 µg/m3 .per il PM10

La valutazione segue una precedente del 2002 condotta con la metodologia seguita da Kunzli et al nel 1999



Anderson et al, 2004

Meta analisi basata su 33 studi europei pubblicata nel 2004 ed utilizzata da Martuzzi (OMS) per la stima di impatto nel 2006

Prepared by: H. Ross Anderson. Richard W. Atkinson, Janet L. Peacock, Louise Marston and Kostas Konstantinou

Meta-analysis of time-series studies and panel studies of Particulate Matter (PM) and Ozone (O₃)

Report of a WHO task group

Valutazione di impatto: studi precedenti ed approccio VIIAS

WHO (2006) funzioni concentrazione-risposta utilizzate

Tabella 7. Sintesi dei RR applicati nello studio e relativi intervalli di confidenza al 95% (IC 95%)^a

PM ₁₀ -PM _{2.5}			
Esiti sanitari	RR	IC 95%	Classi di età
Mortalità (esclusi incidenti) (25) a	1.06	1.02-1.11	≥ 30
Tumore alla trachea, ai bronchi e al polmone (25) a	1.08	1.01-1.16	≥ 30
Infarto (26) a	1.18	1.14-1.23	≥ 30
Ictus (26) a	1.02	0.95-1.10	≥ 30
Mortalità acuta (esclusi incidenti) (27)	1.006	1.004-1.008	Tutte
Mortalità acuta, cause cardiovascolari (27)	1.009	1.005-1.013	Tutte
Mortalità acuta, cause respiratorie (27)	1.013	1.005-1.020	Tutte
Ricoveri ospedalieri per malattie cardiache (5)	1.003	1.000-1.006	Tutte
Ricoveri ospedalieri per malattie respiratorie (5)	1.006	1.002-1.011	Tutte
Bronchite acuta (7)	1.306	1.135-1.502	<15
Ozono			
Esiti sanitari	RR	IC 95%	Classi di età
Mortalità acuta (esclusi incidenti) (27)	1.003	1.001-1.004	Tutte
Mortalità acuta per cause cardiovascolari (27)	1.004	1.003-1.005	Tutte
Ricoveri per cause respiratorie (27)	1.005	0.998-1.012	≥ 65

Valutazione di impatto: studi precedenti ed approccio VIIAS

WHO (2006) Impatto di PM10 e Ozono in 13 città

Tabella 13. Decessi attribuibili a livelli di PM₁₀ superiori ai 20 μg/m³

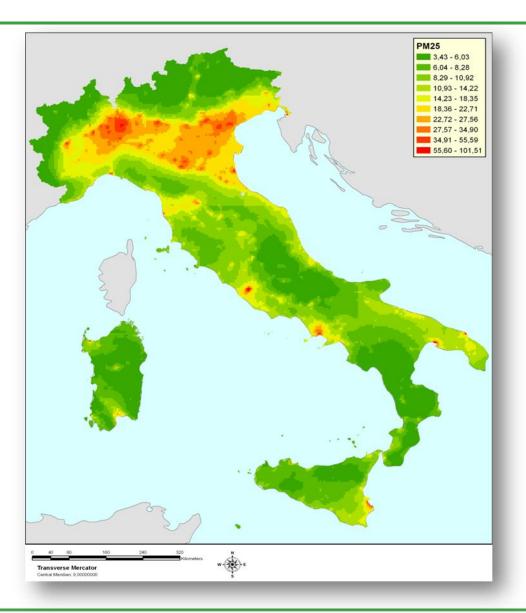
	Maschi		Femmine		Totale			
Cause di morte	N	lcr 95%	N	lcr 95%	N	lcr 95%	% casi attrib	ler 95%
Effetti cronici ^a								
Tutte le cause (esclusi incidenti)	3909	2996-4827	4311	3315-5310	8220	6308-10140	9.0	6.9-11.1
Tumore alla trachea, ai bronchi e ai polmoni	551	392-711	191	137-245	742	530-956	11.6	8.3-14.9
Infarto	1293	1220-1367	1269	1198-1341	2562	2418-2707	19.8	18.7-21
Ictus	126	79-174	203	132-275	329	207-452	3.3	2.1-4.6
Effetti acuti ^b								
Tutte le cause (esclusi incidenti)	654	574-735	718	631-806	1372	1204-1540	1.5	1.3-1.7
Malattie cardiovascolari	362	303-421	481	404-558	843	706-980	2.1	1.8-2.5
Malattie respiratorie	99	77-121	86	67-106	186	145-227	3.1	2.4-3.8

^aAdulti oltre i 30 anni, rischi basati su stime del PM_{2.5}; ^btutte le età.

La valutazione dell'OMS è limitata alle città perchè solo per queste nel 2006 sono disponibili dati misurati di concentrazione basati su centraline di qualità dell'aria.

I modelli per il resto del territorio italiano, pur disponibili, richiedevano un approccio complesso per poter essere utilizzati in una stima nazionale totale.

L'approccio utilizzato dal progetto VIIAS



Il progetto VIIAS

VIIAS pone le basi per la valutazione integrata dell'impatto su ambiente e salute in Italia attraverso l'uso della modellistica su base nazionale o locale che consente di avere mappe di concentrazione degli inquinanti al suolo (PM_{2.5} NO₂ O₃).

Sono in studio scenari di riduzione delle emissioni attraverso politiche di contenimento.

Le attività del progetto VIIAS

Valutazione incertezza

Univ. Firenze

Particelle ultrafini

ISPRA

Corsi di formazione

Stime modellistiche degli inquinanti

Scenari previsionali al 2020

Popolazione esposta

DEP

VIIAS

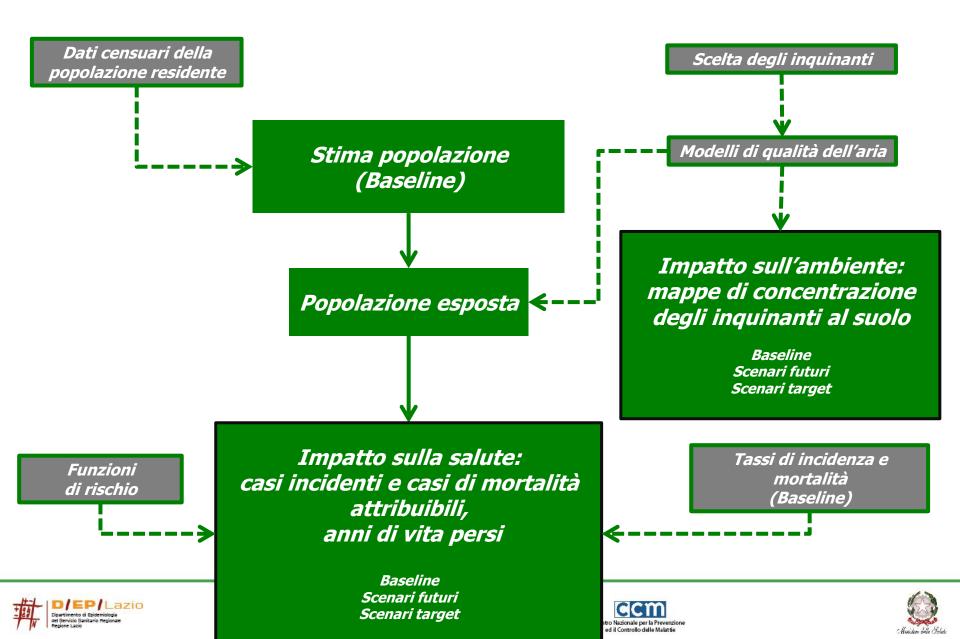
VIIAS a livello locale E.R. Influenza del verde urbano

> Univ. La Sapienza

Modelli di dispersione a livello locale

ARPA Lazio

Comunicazione



ZADIG

viias Lo schema concettuale

Le fasi della Valutazione Integrata

- Le concentrazioni
- La popolazione esposta
- Mortalità/Morbidità al baseline
- Le funzioni concentrazioni risposta
- L'impatto sulla salute
 - Effetti a lungo termine
 - Effetti a breve termine

Riferimenti e Scenari

Baseline 2005

2010

Scenario 2020 (Current Legislation - CLe)

Lo scenario 2020 Cle non comprende le misure aggiuntive che le singole Amministrazioni Regionali potranno porre in essere per abbattere ulteriormente le proprie emissioni, né gli ulteriori eventuali adeguamenti alle direttive comunitarie

Controfattuali basati su possibili politiche di diminuzione dell'inquinamento atmosferico:

- -Rispetto limiti UE
- -Riduzione delle concentrazioni del 20%

 $PM_{2.5}$ ai residenti con concentrazioni medie annue stimate al 2020 superiori al limite delle direttive CE - 25 μ g/m³ - è stata attribuita un'esposizione pari a 25 μ g/m³

NO₂ ai residenti con concentrazioni medie annue stimate al 2020superiori al limite della soglia stabilita dalla CE/OMS – 40 μ g/m³ - è stata attribuita un'esposizione pari a 40 μ g/m³

Per ciascun inquinante, la concentrazione media annua stimata è stata riattribuita sottraendo il 20% dalla stima al 2020

VIIAS: Le funzioni concentrazione risposta

Review of evidence on health aspects of air pollution -**REVIHAAP Project**

Technical Report

This publication arises from the project REVIHAAP and has received funding from the European Union.

Health risks of air pollution in Europe – HRAPIE project

New emerging risks to health from air pollution - results from the survey of experts

By: Susann Henschel and Gabrielle Chan

This publication arises from the HRAPIE project and has received funding from the European Union.

Experts were asked to formulate a response to the following question: "What concentrationresponse



functions for

Revisione di Hoek (2013)

ROMA E

Centro Nazionale per la Prevenzione

HRAPIE (2013)

Health risks of air pollution in Europe -HRAPIE project

New emerging risks to health from air pollution – results from the survey of experts

Table 1. CRFs recommended by the HRAPIE project												
PM, long-term exposure												
Pollutant metric	Health outcome	Group	RR (95% CI) per 10 µg/m³	Range of concentration	Source of backgrol ind health data	Source of CRF	Comments					
PM _{2.5} , annual mean	Mortality, all- cause (natural), age 30+ years	A*	1.062 (1.040–1.083)	All	European mortality database (MDB) (WHO, 2013c), rates for deaths from all natural causes (International Classification of Diseases, tenth revision (ICD-10) chapters I–XVIII, codes A–R) in each of the 53 countries of the WHO European Region, latest available data	Meta-analysis of 13 cohort studies with results: Hoek et al. (2013)						
PM _{2.5} , annual mean	Mortality, cerebrovascular disease (includes stroke), ischaemic heart disease, chronic obstructive pulmonary	A	Global Burden of Disease (GBD) 2010 study (IHME, 2013), supra-linear exponential decay saturation model (age-specific), linearized by the PM _{2.5} expected in	All	European detailed mortality database (WHO, 2013d), ICD-10 codes cerebrovascular: I60–I63, I65–I67, I69.0–I69.3; ischaemic heart disease: I20–I25; COPD: J40–J44, J47; trachea, bronchus and lung cancer: C33–C34, D02.1–D02.2, D38.1	CRFs used in the GBD 2010 study	An alternative to all-cause mortality Both age-specific and all-age estimates to be calculated to assess the potential effect of age stratification					

							rt-term exposure		
		Pollutant metric	Health outcome	Group	RR (95% CI) per 10 µg/m³	Range of concentration	Source of background health data	Source of CRF	Comments
ê	PM ₁₀ , annual mean	PM _{2.5} , daily mean	Mortality, all- cause, all ages	A	1.0123 (1.0045–1.0201)	All	MDB (WHO, 2013c)	APED meta- analysis of 12 single-city and one multicity studies	For information only: not proposed as an alternative to long-term PM _{2.5} exposure The premature deaths attributed to short-term changes of PM _{2.5} are already accounted for in estimating the effects of long-term exposure
+	D/EP	PM _{2.5} , daily mean	Hospital admissions, cardiovascular diseases (CVDs) (includes stroke), all	A*	1.0091 (1.0017–1.0166)	All	European hospital morbidity database (WHO, 2013f), ICD, ninth revision (ICD-9) codes 390-459; ICD-10 codes I00–I99	APED meta- analysis of four single-city and one multicity studies	

Studi condotti dopo Hoek (2013)

ACS California subcohort Jerrett, 2013

73,711 subjects living in California, 1982 – 2000

National English cohort Carey, 2013

835,607 patients from general practice, 2003-2007

ESCAPE Beelen 2014

367,251 participants from 22 European cohorts, 1985-2008

Hoek updated

WHO Expert Meeting: Methods and tools for assessing the health risks of air pollution at local, national and international level

PM_{2.5} (10 μg/m³ increase) and Natural Mortality

Meeting report Bonn, Germany, 12-13 May 2014

HR (95% CI) Study Weight Harvard six cities 1.14 (1.07, 1.22) 6.41 ACS study 1.06 (1.02, 1.11) 10.72 ACS LA sub-cohort study 1.17 (1.05, 1.30) 3.00 1.06 (0.97, 1.16) 4.03 Netherlands Cohort Study Nurses' Health Study → 1.26 (1.03, 1.55) 0.90 Medicare national cohort 1.04 (1.03, 1.06) 18.57 Health professionals follow-up study 0.86 (0.72, 1.02) 1.24 US trucking industry cohort 1.10 (1.03, 1.18) 6.10 Canadian national cohort 1.10 (1.05, 1.15) 9.96 California teachers study 1.01 (0.94, 1.08) 6.00 Rome longitudinal study 1.04 (1.03, 1.05) 19.60 ACS California subcohor 1.06 (1.00, 1.12) 8.08 National English cohort 1.11 (0.98, 1.26) 2.17 1.14 (1.03, 1.27) 3.22 Escape D-L Overall (I-squared=60.8%, p=0.0016) 1.07 (1.04, 1.09) 100.00 .5 .67 1.5

Valutazione di impatto: studi precedenti ed approccio VIIAS

Grazie per l'attenzione

